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Overview of the AdS/CFT theory

Ryu-Takayanagi Formula

Application
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Let’s start with the idea of Black Hole.
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Black hole as a temperature parameter

Thermodynamics Black Hole
Zeroth Law T is constant at Surface gravity κ is constant

equilibrium for a stationary solution

First Law dE = TdS dM =
κ

8πGdA

Second Law dS ≥ 0 dA ≥ 0

Third Law T → 0 ⇒ S → 0 T → 0 ⇒?

Table: No-hair law and basic principle suggests the thermodynamics-BH
similarity
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AdS space and Boundary

ds 2 = 4
∑ d

i=0 dy 2
i

(1− |y| 2) 2

For a closed boundary, for example,
∑ d

i=0 y 2
i = 1. Function

f = 1− |y| 2 is positive, and vanishes on boundary. Hence such a
replacement ds̃ 2 = f 2ds 2would extend the matrix to boundary.
Also, by y = tanh(y/2), one get

ds 2 = dy 2 + sinh 2 ydΩ 2, y ≥ 0

where the boundary is y = ∞. Then transform more, one get

ds 2 = 1

z 2
0

( d∑
i=0

dz 2
i

)

where the boundary is z0 = 0 and infty point z0 = ∞.
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AdS space and Boundary, cont

where the relationship between this matrix and the previous one is
connected by conformal transformation

z → z − i
z + i
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Conformal Field Theory

Generators of symmetry: conformal invariant operations.

Mµν = i(xµ∂ν−xν∂µ),Pµ = −i∂µ,D = −ixµ∂µ,Kµ = i(x 2∂µ−2xµxν∂ν)

Figure: xµ → xµ−aµx 2

1−2a·x+a 2x 2 transformation



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Duality: Dictionary

▶ Requirement: symmetries match.
▶ Partion function ZCFT[ϕ] = ZAdS(Bulk)[ϕ]

▶ A field whose boundary behavior is z−∆ maps to an operator
of dimension ∆:O(x) = limz→0 z−∆ϕ(x, z).
⟨
∏

n O⟩CFT = limz→0 z−n∆⟨
∏

n ϕ(xi, z)⟩Bulk

▶ Maldacena (1997)
▶ type IIB string theory corresponds to N = 4 supersymmetric

Yang–Mills theory on the four-dimensional boundary in the
large N limit

▶ Strongly coupled → Weakly coupled + Gravity!
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Massless Scalar Field Examples (*)
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Ryu-Takayanagi Formula

1-D quantum many-body entanglement entropy is given by

SA =
c
3
· log

(
L
πa sin

(
πl
L

))
where l and L are the length of the subsystem A and the total
system A ∪ B. Based on von Neumann entropy, define the
entanglement entropy SA in a CFT on R1,d (or R× Sd) for a
subsystem A that has an arbitrary d − 1 dimensional boundary
∂A ∈ Rd (or Sd): ‘area law’

SA =
Area of γA

4G (d+2)
N

,

γA is the d dimensional static minimal surface in AdSd+2 whose
boundary is given by ∂A
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S = −Trρ ln ρ = − ∂

∂nTrAρ
n
A

∣∣∣∣
n→1

,& ∂ ln TrAρn
A

∂n =
1

TrAρn
A

∂TrAρn
A

∂n

To connect n part, a conical defect is derived, which is mapped to
a point mass at AdS(Bulk) space. Ricci scalar reads as

R = 4π(1− n)δ(γA) + R(0)

which then results in E-H entropy, i.e., ln ZCFT. Use

SE-H = − 1

16πG

∫
d 3x(R + Λ) = − Area

16πG(1− n) · 4π

and

SA = − ∂

∂n ln TrAρ
n
A = − ∂

∂n

[
(1− n)Area

4G

]
n=1

=
Area
4G
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t

θ

2πl/L

B

A
γA ρ

(a)

B

A

γA

(b)

Figure: (a) AdS3 space and CFT2 living on its boundary and (b) a
geodesics γA as a holographic screen.
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It is readily seen that the basic properties of the entanglement
entropy

▶ SA = SB (B is the complement of A),
▶ SA1 + SA2 ≥ SA1∪A2 (subadditivity) and
▶ SAB + SBC ≥ SB + SABC (strong subadditivity)

are satisfied.

Each solution of gravity field equations represents a state (pure or mixed) of

CFT. E.g.:

• AdS represents vacuum

• Black hole represents deconfined thermal state. Bekenstein-Hawking en-

tropy formula:

SBH =

1

4GN
area(horizon) = O(N)

4 Ryu-Takayanagi formula

Consider a static solution. Constant-time slice is an asymptotically hyperbolic space.

Ryu-Takayanagi formula:

S(A) =

1

4GN
area(m(A))

m(A) = minimal bulk surface homologous to A

black
hole

A

m(A)

Ac

m(Ac)

A

m(A)

Large amount of evidence in favor of RT formula:

• has been applied to a wide variety of holographic systems, always giving physically reasonable results

• agrees with EEs computed from first principles (usually using replica trick) in many specific cases (both

divergent & finite parts); general argument (Lewkowycz, Maldacena ’13)

• obeys all applicable properties of EEs, e.g.

1. if full system is in a pure state, then S(A) = S(Ac
); if full system is mixed, then not necessarily

2. strong subadditivity: S(AB) + S(BC) � S(B) + S(ABC) (Headrick, Takayanagi ’07, . . . )

m(ABC)

m(B)

≥=
m(AB)

B CA

m(BC)

B C B CAA

7Figure: Strong subadditivity.
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Finite Temperature and Black Hole

In this case, the time integral is then considered as a periodic one.
As space is periodic already, we can get the time periodic as the
space described by torus:

ds 2 = (r 2 − r 2+)dτ 2 +
R 2

r 2 − r 2+
dr 2 + r 2dϕ 2

while previously it’s a cylinder (t : −∞ → ∞). Then, the point is
expanded due to finite time period, and relates by β/L = R/r+,
exactly a Euclidean black hole.
Recall the B-H and thermodynamics.
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A

γA γB

B

(b)(a)
horizon

boundary

Figure: (a) Minimal surfaces γA for various sizes of A. (b) γA and γB
wrap the different parts of the horizon.
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Application: to CMT (Antiferromagnets)

Use effective field theory to describe entanglement entropy, use
AdS/CFT to map to a known result, so that the exact solution and
excitation spectrum is derived.
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