Electron-Electron Interactions in Graphene:
Current Status and Perspectives

June 9, 2015
Table of Contents

1 Introduction

2 Is that a Kondo Effect?
 - Why Kondo Unaccessible?
 - What they said?
 - Rule out other cases
 - Experimental results

3 Reference
Background

The study of electron-electron interaction goes for a long history since the investigation of Drude Model, discussed by Paul Drude[3] and Arnold Sommerfeld[4].¹

¹which, shamelessly, claims that electrons propagate freely in a non-relativistic (Galilean invariant) way (Drude’s contribution), and under Fermi-Dirac statistics.
Introduction

The study of electron-electron interaction goes for a long history since the investigation of Drude Model, discussed by Paul Drude[3] and Arnold Sommerfeld[4].¹

The simplest system that actually considers the interaction and by the same time yields fabulous result is Mott Insulator system. By Hubbard Model, which mainly serves to simplify the onsite Coulomb interaction(repulsion) by a easily acceptable way

¹which, shamelessly, claims that electrons propagate freely in a non-relativistic (Galilean invariant) way (Drude’s contribution), and under Fermi-Dirac statistics.
Background

The study of electron-electron interaction goes for a long history since the investigation of Drude Model, discussed by Paul Drude[3] and Arnold Sommerfeld[4].\(^1\)

The simplest system that actually considers the interaction and by the same time yields fabulous result is Mott Insulator system. By Hubbard Model, which mainly serves to simplify the onsite Coulomb interaction(repulsion) by a easily acceptable way

\[
H = U(\hat{n}_{1\uparrow}\hat{n}_{1\downarrow} + \hat{n}_{2\uparrow}\hat{n}_{2\downarrow} + \cdots)
\]

\(^1\)which, shamelessly, claims that electrons propagate freely in a non-relativistic (Galilean invariant) way (Drude’s contribution), and under Fermi-Dirac statistics.
With respect to time, the field theory has been applied to this problem.\(^2\) Hence, collective modes of electron such as screening effect has been studied well.

\(^2\)Prof. Shindou teaches a very nice course which named Quantum Statistical Physics while actually tells Quantum Many-Body Problems with field theory. Highly recommended if you wanna die.
With respect to time, the field theory has been applied to this problem.\(^2\) Hence, collective modes of electron such as screening effect has been studied well. Particular, interests are arisen when lower dimension material involved, such as graphene. Since graphene is a 2D system, the collective plasmon mode is gapless.

\(^2\)Prof. Shindou teaches a very nice course which named Quantum Statistical Physics while actually tells Quantum Many-Body Problems with field theory. Highly recommended if you wanna die.
With respect to time, the field theory has been applied to this problem.\(^2\) Hence, collective modes of electron such as screening effect has been studied well. Particular, interests are arisen when lower dimension material involved, such as graphene. Since graphene is a 2D system, the collective plasmon mode is gapless.

Besides, 1D electron system’s boson excitation Luttinger Liquid and 0D electron system Quantum Dot are also well-studied, but we don’t talk them today.

\(^2\)Prof. Shindou teaches a very nice course which named Quantum Statistical Physics while actually tells Quantum Many-Body Problems with field theory. Highly recommended if you wanna die.
With respect to time, the field theory has been applied to this problem.2 Hence, collective modes of electron such as screening effect has been studied well. Particular, interests are arisen when lower dimension material involved, such as graphene. Since graphene is a 2D system, the collective plasmon mode is gapless.

Besides, 1D electron system’s’s boson excitation Luttinger Liquid and 0D electron system Quantum Dot are also well-studied, but we don’t talk them today.

Another interesting phenomenon, which we previously reviewed, is Kondo effect involving magnetic impurities as an additional weird electron resistance at low temperature region.

2Prof. Shindou teaches a very nice course which named Quantum Statistical Physics while actually tells Quantum Many-Body Problems with field theory. Highly recommended if you wanna die.
Last class, we talk about Klein paradox in graphene as an unexpected barrier to construct localized state. Vacancies defect, however, contributes to generate such a state, but meanwhile cause local magnetic state.

The heuristic criterion that describes the formation of a local magnetic moment is addressed at the mean field level by the Anderson impurity model, the system is described by Hamiltonian in momentum space.

\[\mathcal{H}_V = V \sum_{\mathbf{p},\sigma} (f_{\sigma}^{\dagger} b_{\mathbf{p},\sigma} + b_{\mathbf{p},\sigma}^{\dagger} f_{\sigma}) \]
Figure: (a) Honeycomb lattice with an impurity atom. Black: sublattice A; White: sublattice B. Intersection of the Dirac cone spectrum, $E(k) = \pm v|k|$, with the localized level $E_f = \varepsilon_0$: (b) $\varepsilon_0 > 0$, (c) $\varepsilon_0 < 0$.

E-E Interaction in Graphene

Introduction

a)

b) c)
Hence, we begin to ask how electron-impurity interaction results in some visible effect. However, the typical effect, Kondo effect, the coupling of conduction electrons to local magnetic moments which we have already known a lot and at the same time is a central problem in CMP, has not been realized in graphene for a long time.

especially such a weak and dilute one
Hence, we begin to ask how electron-impurity interaction results in some visible effect. However, the typical effect, Kondo effect, the coupling of conduction electrons to local magnetic moments which we have already known a lot and at the same time is a central problem in CMP, has not been realized in graphene for a long time.

Technically, Kondo effect could not be considered as E-E interaction. But interestingly, the magnetic phenomenon is only possible to detect by transport experiment and the STM is out due to the scale of difference in DOS.

\(^3\)especially such a weak and dilute one
Hence, we begin to ask how electron-impurity interaction results in some visible effect. However, the typical effect, Kondo effect, the coupling of conduction electrons to local magnetic moments which we have already known a lot and at the same time is a central problem in CMP, has not been realized in graphene for a long time.

Technically, Kondo effect could not be considered as E-E interaction. But interestingly, the magnetic phenomenon\(^3\) is only possible to detect by transport experiment and the STM is out due to the scale of difference in DOS.

Trick goes here. It’s hard to distinguish the difference between different causes in transporting property. We are going to talk this particular idea in detail.

\(^3\)especially such a weak and dilute one
Table of Contents

1 Introduction

2 Is that a Kondo Effect?
 - Why Kondo Unaccessible?
 - What they said?
 - Rule out other cases
 - Experimental results

3 Reference
Tunable Kondo effect in graphene with defects

Jian-Hao Chen1,2†, Liang Li2, William G. Cullen1,2, Ellen D. Williams1,2 and Michael S. Fuhrer1,2*

\textbf{Figure}: Main Experiment Paper Discussed Today\cite{2}
Tunable Kondo effect in graphene with defects

Jian-Hao Chen¹,²†, Liang Li², William G. Cullen¹,², Ellen D. Williams¹,² and Michael S. Fuhrer¹,²*

Figure: Main Experiment Paper Discussed Today[2]

Maybe I can ask a question here: What’s the most important property of Kondo effect?
Tunable Kondo effect in graphene with defects

Jian-Hao Chen¹²⁺, Liang Li², William G. Cullen¹², Ellen D. Williams¹² and Michael S. Fuhrer¹²★

Figure: Main Experiment Paper Discussed Today[2]

Maybe I can ask a question here: What’s the most important property of Kondo effect?

Definitely the logarithms resistivity at low temperature.
Figure: Universal Kondo behaviour of graphene with defects.

a, Temperature-dependent resistivity $\rho(V_g)$ of graphene sample Q6 under a perpendicular magnetic field of 1 T, at 12 different gate voltages, with temperature changing from 300 mK to 290 K.

b, The normalized Kondo part of the resistivity $(\rho - \rho_{c1})/\rho_{K,0}$ versus $T/T_K(V_g)$, where $T_K(V_g)$ is the Kondo temperature at respective gate voltage. The red line is the expected universal Kondo behaviour from numerical renormalization group calculations.
We have already done with this paper. What’s next?

It is this paper that causes widely academical debates, for mainly:

- Kondo effect is extremely difficult to achieve in graphene.
- The seemingly major phenomenon can be derived through few other ways.
 a) Electron-Electron Interaction
 b) Weak Localization
Table of Contents

1 Introduction

2 Is that a Kondo Effect?
 ■ Why Kondo Unaccessible?
 ■ What they said?
 ■ Rule out other cases
 ■ Experimental results

3 Reference
E-E Interaction in Graphene
Is that a Kondo Effect?
Why Kondo Unaccessible?

General explanation to the accessibility

For a detailed review, see [5].
General explanation to the accessibility

For a detailed review, see [5].

- In metal, the magnetic screening (the ultimate consequence of the so-called Kondo cloud) causes suppression the appearance of magnetic moments.
- However, in graphene, the effect is suppressed mainly due to
 a) Low density of states (chemical potential)
 b) Sublattice structure (Symmetry breaking or not)
Some theoretical picture

From a tight-binding perspective, for a spin 1/2 impurity, the hybridization Hamiltonian can be written in the diagonal basis:

$$\mathcal{H} = V \sum_{\alpha=\pm} \sum_{p,\sigma} \left[\Theta_{\alpha,p} c_{\alpha,p}^\dagger f_{\sigma} + h.c. \right]$$

where

$$c_{\pm,k\sigma} = \frac{1}{\sqrt{2}} \left[b_{k\sigma} \pm \left(\frac{\phi_k^*}{|\phi_k|} \right) a_{k\sigma} \right]$$
As in metals, the Anderson Hamiltonian in graphene can be mapped into the spin exchange Hamiltonian by a canonical transformation.
As in metals, the Anderson Hamiltonian in graphene can be mapped into the spin exchange Hamiltonian by a canonical transformation.

The spin exchange Hamiltonian between the magnetic adatom and the graphene electrons is

$$\mathcal{H}_e = -J \sum_{kk'} \sum_{\alpha \alpha'} \Theta^*_{\alpha, \mathbf{k}} \Theta_{\alpha', \mathbf{k}'} \mathbf{S} \cdot \mathbf{c}_{\alpha', \sigma', \mathbf{k}'} \sigma \mathbf{c}_{\alpha, \sigma, \mathbf{k}}$$

where $\sigma = (\sigma_1, \sigma_2, \sigma_3)$ are the Pauli matrices, $\mathbf{S} = \frac{1}{2} f_\sigma^\dagger \sigma f_{\sigma'}$ is the localized spin.
E-E Interaction in Graphene

Is that a Kondo Effect?

Why Kondo Unaccessible?

Figure: Unlike the situation in metals, the exchange coupling in graphene can be controlled by gating, in particular when the chemical potential is brought to the proximity of the localized level, where the Kondo coupling becomes resonant.
Table of Contents

1 Introduction

2 Is that a Kondo Effect?
 - Why Kondo Unaccessible?
 - What they said?
 - Rule out other cases
 - Experimental results

3 Reference
The critics start from Weber et al., who comment that the resistivity data might be confounded by Altshuler–Aronov corrections, which comes from electron-electron interaction. It also contributes a logarithmic rise of resistivity at low temperatures in 2D system[1]:

$$\Delta \rho \propto \frac{1}{\pi} \frac{\nu(q)}{\epsilon_F} \ln(|\epsilon|\tau)$$

\(^4\)In a 3D system, however, it has a form of \((\epsilon\tau)^{1/2}(\epsilon_F\tau)^{-2}\)
The critics start from Weber et al., who comment that the resistivity data might be confounded by Altshuler – Aronov corrections, which comes from electron-electron interaction. It also contributes a logarithmic rise of resistivity at low temperatures in 2D\(^4\) system\(^1\):

\[
\Delta \rho \propto \frac{1}{\pi} \frac{v(q)}{\epsilon_F} \ln(|\epsilon|\tau)
\]

Others also comment on the probability of weak localization.

\(^{4}\)In a 3D system, however, it has a form of \((\epsilon\tau)^{1/2}(\epsilon_F\tau)^{-2}\).
Table of Contents

1 Introduction

2 Is that a Kondo Effect?
 - Why Kondo Unaccessible?
 - What they said?
 - Rule out other cases
 - Experimental results

3 Reference
To apply in a graphene system, the resistivity can be expressed by

$$\rho_{xx} = \rho_{xx,0} \left[1 + A \frac{\rho_{xx,0} e^2}{2\pi^2 \hbar} \left(\mu^2 B^2 - 1 \right) \ln \left(\frac{k_B T \tau_{tr}}{\hbar} \right) \right]$$

where $\rho_{xx,0}$ is the uncorrected longitudinal resistivity and A is a constant less than 1^5, μ the charge carrier mobility, τ_{tr} the relaxation time of transport momentum.

5If $A > 1$, the system is unphysical. In similar cases, the range of A is experimental fitted by $A \sim 0.3 - 0.9$.
To apply in a graphene system, the resistivity can be expressed by

\[
\rho_{xx} = \rho_{xx,0} \left[1 + A \frac{\rho_{xx,0} e^2}{2\pi^2 \hbar} \left(\mu^2 B^2 - 1 \right) \ln \left(\frac{k_B T \tau_{tr}}{\hbar} \right) \right]
\]

where \(\rho_{xx,0}\) is the uncorrected longitudinal resistivity and \(A\) is a constant less than \(\frac{1}{5}\), \(\mu\) the charge carrier mobility, \(\tau_{tr}\) the relaxation time of transport momentum.

It has two parameters, \(T\) and \(B\). We can check the fitting of the two parameters.

\[^{5}\text{If } A > 1, \text{ the system is unphysical. In similar cases, the range of } A \text{ is experimental fitted by } A \sim 0.3 - 0.9.\]
E-E Interaction in Graphene

Is that a Kondo Effect?

Rule out other cases

Figure: Temperature and magnetic-field dependent resistivity of graphene with defects. **a**, Magnetoresistance of graphene sample Q6 with defects at a temperature $T = 300 \text{mK}$ and at gate voltages $V_g - V_{g,\text{min}} = 15.3 \text{V}$ (blue stars), -25.3V (purple triangles), -35.3V (red circles) and -45.3V (green crosses); $V_{g,\text{min}} = 5.3 \text{V}$ is the gate voltage of minimum conductivity. **b**, Temperature-dependent resistivity of graphene under $1T$ of transverse magnetic field and at the same four V_g values in **a**. In **a** and **b** the solid lines are with $A = 0.32$, chosen to fit the data in **a**.
It can be seen that the correction is plausible only when temperature is very low; it doesn’t account the saturation Temperature effect.

\[L_T > l_{sample}, \text{ and an approximation of } L_T \text{ is } L_T \approx \frac{\mu}{v_F e} \sqrt{\frac{E_F^3}{k_B T}} \]
It can be seen that the correction is plausible only when temperature is very low; it doesn’t account the saturation Temperature effect.

The saturation and related temperature can be explained for a revised version of A-A effect, which take the finite size of the sample into account; however, this sort of modification only relates to the gate voltage $|V_g - V_{g,\text{min}}|$ by

$$k_B T_{\text{sat}} \approx \frac{\mu^2 E_F^3}{v_F^2 e^2 l_{\text{sample}}^2}$$

where, the gate voltage influences this by $|V_g - V_{g,\text{min}}| \propto E_F^2$. The l_{sample} is nothing but the shortest sample dimension.\(^6\)

\(^6\)This expression is given by consider the Temperature-dependent thouless length $L_T > l_{\text{sample}}$, and an approximation of L_T is $L_T \approx \frac{\mu}{v_F e} \sqrt{\frac{E_F^3}{k_B T}}$.
Based on this, we can go on to make theoretical assumption of the approximately saturation temperature from the following figure:
Based on this, we can go on to make theoretical assumption of the approximately saturation temperature from the following figure:

Figure: This figure illustrates the theoretical result (solid lines) and experimental results (dashed point) of how the saturation temperature changes with $|V_g - V_{g,min}|$. A-A effect predicts a strong ΔV_g dependency, and the two different-size samples should separated, while the experimental data proves neither.
These are all bad results. If you’re still unsatisfied of the result, what if I claim the fitting gives $A \sim 1.9 - 2.5$ in b in the previous figure?
Is that weak localization?

Remember what is a weak localization?
Is that weak localization?

Remember what is a weak localization?

Weak localization is a phenomenon caused by the quantum correction to the conductivity of two dimensional systems due to electron interference.

– *PhysRevLett.100.056802[6]*
Is that weak localization?

Remember what is a weak localization?

Weak localization is a phenomenon caused by the quantum correction to the conductivity of two dimensional systems due to electron interference.

– PhysRevLett.100.056802[6]

What is its correction in graphene? As you might guess, it’s logarithmically.
E-E Interaction in Graphene

Is that a Kondo Effect?

Rule out other cases

Figure: A simple illustration
You might say ‘yooooo’, but it’s not applicable in our experiment.
You might say ‘yooooo’, but it’s not applicable in our experiment.

Because such a correction by WL would be completely destructed due to slightly magnetic field applying on it, while in our experiment, the B-dependency is not this form.
E-E Interaction in Graphene

Is that a Kondo Effect?

Rule out other cases
Table of Contents

1 Introduction

2 Is that a Kondo Effect?
 - Why Kondo Unaccessible?
 - What they said?
 - Rule out other cases
 - Experimental results

3 Reference
Raman illustration of defects

Figure: After irradiation and annealing overnight at 490K in UHV, the D peak which stands for defects, arisen to very high. Recall what D peak is? (compare to G, i.e., $2D$ peak)
Table of Contents

1. Introduction

2. Is that a Kondo Effect?
 - Why Kondo Unaccessible?
 - What they said?
 - Rule out other cases
 - Experimental results

3. Reference
B. L. Altshuler, A. G. Aronov, and P. A. Lee.
Interaction effects in disordered fermi systems in two dimensions.

Jian-Hao Chen, Liang Li, William G Cullen, Ellen D Williams, and Michael S Fuhrer.
Tunable kondo effect in graphene with defects.

Paul Drude.
Zur elektronentheorie der metalle; ii. teil. galvanomagnetische und thermomagnetische effecte.
